Lecture 15 Long-run properties of DTMCs and MDPs

Dr. Dave Parker

Department of Computer Science University of Oxford

Overview

- LTL Linear temporal logic
- Repeated reachability and persistence
- Long-run properties of DTMCs
 - bottom strongly connected components (BSCCs)
- Long-run properties of MDPs
 - end components (E.C.s)

Limitations of PCTL

- PCTL, although useful in practice, has limited expressivity
 - essentially: probability of reaching states in X, passing only through states in Y (and within k time-steps)
- More expressive logics can be used, for example:
 - LTL [Pnu77] the non-probabilistic linear-time temporal logic
 - PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL
 - both allow path operators to be combined
- In PCTL, temporal operators always appear inside $P_{-p}[...]$
 - (and, in CTL, they always appear inside A or E)
 - in LTL (and PCTL*), temporal operators can be combined

Review – CTL and PCTL

• CTL:

$$- \varphi ::= true | a | \phi \land \phi | \neg \phi | A \psi | E \psi$$
$$- \psi ::= X \varphi | \phi U \varphi$$

• PCTL

$$-\phi$$
 ::= true | a | $\phi \land \phi$ | $\neg \phi$ | $P_{\sim p}$ [ψ]

$$- \psi ::= X \varphi | \varphi U^{\leq k} \varphi | \varphi U \varphi$$

- Notation for paths: $\omega = s_0 s_1 s_2 \dots$
 - Path(s) = set of all (infinite) paths with $s_0 = s$
 - $\omega(i)$ denotes the (i+1)th state, i.e. $\omega(i) = s_i$
 - $\omega[i...]$ is the suffix starting from s_i , i.e. $\omega[i...] = s_i s_{i+1} s_{i+2}...$

LTL – Linear temporal logic

- LTL syntax
 - path formulae only
 - $\psi ::= true \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi \cup \psi$
 - where $a \in AP$ is an atomic proposition
- LTL semantics (for a path ω)
 - $\begin{array}{lll} \ \omega \vDash true & always \\ \ \omega \vDash a & \Leftrightarrow & a \in L(\omega(0)) \\ \ \omega \vDash \psi_1 \land \psi_2 & \Leftrightarrow & \omega \vDash \psi_1 \text{ and } \omega \vDash \psi_2 \\ \ \omega \vDash \neg \psi & \Leftrightarrow & \omega \nvDash \psi \\ \ \omega \vDash \lor \psi & \Leftrightarrow & \omega [1...] \vDash \psi \\ \ \omega \vDash \psi_1 \cup \psi_2 & \Leftrightarrow & \exists k \ge 0 \text{ s.t. } \omega[k...] \vDash \psi_2 \text{ and } \\ \forall i < k \ \omega[i...] \vDash \psi_1 \end{array}$

LTL – Linear temporal logic

- Derived operators like CTL, for example:
 - $\ F \ \psi \equiv true \ U \ \psi$
 - $\ G \ \psi \equiv \ \neg F(\neg \psi)$
- LTL semantics (non-probabilistic)
 - implicit universal quantification over paths
 - i.e. for an LTS M = (S,s_{init},\rightarrow,L) and LTL formula ψ
 - $s \models \psi \text{ iff } \omega \models \psi \text{ for all paths } \omega \in Path(s)$
 - $\ \mathsf{M} \vDash \psi \text{ iff } s_{\mathsf{init}} \vDash \psi$
- e.g:
 - A F (req \land X ack)
 - "it is always possible that a request, followed immediately by an acknowledgement, can occur"

More LTL examples

- (F tmp_fail₁) \land (F tmp_fail₂)
 - "both servers suffer temporary failures at some point"
- GF ready
 - "the server always eventually returns to a ready-state"
- G (req \rightarrow F ack)
 - "requests are always followed by an acknowledgement"
- FG stable
 - "the system reaches and stays in a 'stable' state"

Branching vs. Linear time

• LTL but not CTL:

- FG stable
- "the system reaches and stays in a 'stable' state"
- e.g. A FG stable \neq AF AG stable

• CTL but not LTL:

- AG EF init
- e.g. "for every computation, it is always possible to return to the initial state"

LTL + probabilities

- Same idea as PCTL: probabilities of sets of path formulae
 - for a state s of a DTMC and an LTL formula $\psi :$
 - $\text{ Prob}(s, \psi) = \text{Pr}_s \left\{ \, \omega \in \text{Path}(s) \mid \omega \vDash \psi \, \right\}$
 - all such path sets are measurable (see later lecture)
- For MDPs, we can again consider lower/upper bounds
 - $\ \textbf{p}_{min}(\textbf{s}, \, \psi) = inf_{\sigma \in Adv} \ Prob^{\sigma}(\textbf{s}, \, \psi)$
 - $p_{max}(s, \psi) = sup_{\sigma \in Adv} Prob^{\sigma}(s, \psi)$
 - (for LTL formula ψ)
- For DTMCs or MDPs, an LTL specification often comprises an LTL (path) formula and a probability bound
 - e.g. $P_{>0.99}$ [F (req \wedge X ack)]

PCTL*

- PCTL* subsumes both (probabilistic) LTL and PCTL
- State formulae:
 - $\varphi ::= true | a | \phi \land \phi | \neg \phi | P_{\sim p} [\psi]$

- where $a \in AP$, $\sim \in \{<,>,\leq,\geq\}$, $p \in [0,1]$ and ψ a path formula

- Path formulae:
 - $\psi ::= \varphi \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi \cup \psi$
 - where φ is a state formula
- + A PCTL* formula is a state formula φ
 - e.g. $P_{>0.99}$ [GF crit_1] \wedge $P_{>0.99}$ [GF crit_2]
 - e.g. $P_{\geq 0.75}$ [GF $P_{>0}$ [F init]

Fundamental property of DTMCs

- Strongly connected component (SCC)
 - maximally strongly connected set of states
- Bottom strongly connected component (BSCC)
 - SCC T from which no state outside T is reachable from T
- With probability 1, a BSCC will be reached and all of its states visited infinitely often

• Formally:

 $\begin{array}{l} - \ Pr_s \left\{ \ \omega \in Path(s) \ \big| \ \exists \ i \geq 0, \ \exists \ BSCC \ T \ such \ that \\ \forall \ j \geq i \ \omega(i) \in T \ and \\ \forall \ s' \in T \ \omega(k) = \ s' \ for \ infinitely \ many \ k \ \right\} \ = \ 1 \end{array}$

Repeated reachability – DTMCs

- Repeated reachability:
 - "always eventually..." or "infinitely often..."
- e.g. "what is the probability that the protocol successfully sends a message infinitely often?"
- Using LTL notation:

$$- ω ⊨ GF a$$

 \Leftrightarrow
 $- \forall i \ge 0 . \exists j \ge i . ω(j) ∈ Sat(a)$

• Prob(s, GF a)

 $= Pr_s \{ \ \omega \in Path(s) \ | \ \forall \ i \ge 0 \ . \ \exists \ j \ge i \ . \ \omega(j) \in Sat(a) \ \}$

Qualitative repeated reachability• $Pr_s \{ \omega \in Path(s) \mid \forall i \ge 0 . \exists j \ge i . \omega(j) \in Sat(a) \} = 1$ • $P_{\ge 1} [GF a]$ • $P_{\ge 1} [GF a]$ • If and only if

• $T \cap Sat(a) \neq \emptyset$ for all BSCCs T reachable from s

Examples:

 $s_0 \vDash P_{\geq 1} [GF(b \lor c)]$ $s_0 \nvDash P_{\geq 1} [GFb]$ $s_2 \vDash P_{\geq 1} [GFc]$

Quantitative repeated reachability

- Prob(s, GF a) = Prob(s, F T_{GFa})
 - where T_{GFa} = union of all BSCCs T with T \cap Sat(a) $\neq \emptyset$

• From the above, we also have:

 $-P_{>0}$ [GF a] \Leftrightarrow T \cap Sat(a) $\neq \emptyset$ for some reachable BSCC T

Persistence – DTMCs

- Persistence properties: "eventually always..."
 - e.g. "what is the probability of the leader election algorithm reaching, and staying in, a stable state?"
 - e.g. "what is the probability that an irrecoverable error occurs?"
- Using LTL notation:

$$- ω ⊨ FG a ⇔ - ∃ i≥0 . ∀ j≥i . ω(j) ∈ Sat(a)$$

• Prob(s, FG a)

= $Pr_s \{ \omega \in Path(s) \mid \exists i \ge 0 . \forall j \ge i . \omega(j) \in Sat(a) \}$

Qualitative persistence

- $Pr_s \{ \omega \in Path(s) \mid \exists i \ge 0 . \forall j \ge i . \omega(j) \in Sat(a) \} = 1$
- P_{≥1} [FG a]
 - if and only if
- $T \subseteq Sat(a)$ for all BSCCs T reachable from s

Examples:

$$\begin{split} \mathbf{s}_0 &\nvDash \mathbf{P}_{\geq 1} \ [\ \mathsf{FG} \ (\mathbf{b} \lor \mathbf{c}) \] \\ \mathbf{s}_0 &\vDash \mathbf{P}_{\geq 1} \ [\ \mathsf{FG} \ (\mathbf{b} \lor \mathbf{c} \lor \mathbf{d}) \] \\ \mathbf{s}_2 &\vDash \mathbf{P}_{\geq 1} \ [\ \mathsf{FG} \ (\mathbf{c} \lor \mathbf{d}) \] \end{split}$$

Quantitative persistence

- Prob(s, FG a) = Prob(s, F T_{FGa})
 - where T_{FGa} = union of all BSCCs T with $T \subseteq Sat(a)$

Example:

 $Prob(s_0, FG (b \lor c))$

- $= \text{Prob}(s_0, \text{ F } T_{\text{FG}(b \lor c)})$
- $= \text{Prob}(s_0, \text{ F}(T_1 \cup T_2))$
- = $Prob(s_0, F \{s_3, s_4\})$

= 2/3 + 1/6 = 5/6

Success sets

• The sets T_P for property P are called success sets

$$-T_{GFa}$$
 = union of all BSCCs T with T \cap Sat(a) $\neq \emptyset$

$$-T_{FGa}$$
 = union of all BSCCs T with T \subseteq Sat(a)

- Sometimes denoted U_P
 - e.g. U_{GFa}
 - we use T_p here (to avoid confusion with the until operator)

Repeated reachability + persistence

- Repeated reachability and persistence are dual properties
 - GF a $\equiv \neg$ (FG \neg a)
 - $FG a \equiv \neg(GF \neg a)$
- Hence, for example:
 - Prob(s, GF a) = 1 Prob(s, FG \neg a)
- Can show this through LTL equivalences, or...
- Prob(s, GF a) + Prob(s, FG \neg a)
- = Prob(s, F T_{GFa}) + Prob(s, F T_{FG¬a})
 - T_{GFa} = union of BSCCs T with T∩Sat(a)≠Ø (T intersects Sat(a))
 - $-T_{FG\neg a}$ = union of BSCCs T with T \subseteq (S \Sat(a)) (no intersection)

= Prob(s, F ($T_{GFa} \cup T_{FG\neg a}$)) = 1 (fundamental DTMC property)

End components of MDPs

- Consider an MDP M = (S,s_{init},Steps,L)
- A sub-MDP of M is a pair (T, Steps') where:
 - $T \subseteq S$ is a (non-empty) subset of M's states
 - Steps'(s) \subseteq Steps(s) for each s \in T
 - (T,Steps') is closed under probabilistic branching, i.e. the set of states { s' | μ (s')>0 for some (a, μ) \in Steps'(s) } is a subset of T
- An end component of M is a strongly connected sub-MDP

Note:

- action labels omitted
- probabilities omitted where =1

End components – Examples

- Sub-MDPs
 - can be formed from state sets such as:
 - $\{s_2, s_5, s_7, s_8\}, \{s_0, s_2, s_5, s_7, s_8\}, \{s_5, s_7, s_8\}, \{s_1, s_3, s_4\}, \{s_1, s_3, s_4, s_6\}, \{s_3, s_4\}, \dots$
- End components
 - can be formed from state sets:
 - $\{s_3, s_4\}, \{s_1, s_3, s_4\}, \{s_6\}, \{s_5, s_7, s_8\}$
- Note that
 - state sets do not necessarily uniquely identify end components
 - e.g. $\{s_1, s_3, s_4\}$

End components of MDPs

- For finite MDPs...
 - (analogue of fundamental property of finite DTMCs)
- For every end component, there
 is an adversary which, with
 probability 1, forces the MDP
 to remain in the end component,
 and visit all its states infinitely often
- Under every adversary σ, with probability 1 an end component will be reached and all of its states visited infinitely often

Repeated reachability - MDPs (max)

- Repeated reachability (GF) for MDPs
 - consider first the case of maximum probabilities...
 - $p_{max}(s, GF a)$
- First, a simple qualitative property:
 - Prob^{σ}(s, GF a) > 0 for some adversary σ , i.e. $p_{max}(s, GF a) > 0$ \Leftrightarrow
 - $T \cap Sat(a) \neq \emptyset$ for some end component T reachable from s
- The quantitative case (for maximum probabilities):
 - $p_{max}(s, GF a) = p_{max}(s, F T_{GFa})$
 - where T_{GFa} is the union of sets T for all end components (T,Steps') with $T \cap Sat(a) \neq \emptyset$ (i.e. at least one a-state in T)

Example

- Check: $P_{<0.8}$ [GF b] for s₀
- Compute p_{max}(GF b)
 - $p_{max}(GF b) = p_{max}(s, F T_{GFb})$
 - T_{GFb} is the union of sets T for all end components with T \cap Sat(b) $\neq \emptyset$
 - Sat(b) = { s₄, s₆ }

$$- T_{GFb} = T_1 \cup T_2 \cup T_3 = \{ s_1, s_3 s_4, s_6 \}$$

$$- p_{max}(s, F T_{GFb}) = 0.75$$

 $- p_{max}(GF b) = 0.75$

0.6 S₀ 0.3 S_2 T_1 S_1 0.3 b b T_2 0.9 T_3 **S**₆ T_4

• Result: $s_0 \models P_{<0.8}$ [GF b]

Repeated reachability - MDPs (max)

Quantitative case:

 $- p_{max}(s, GF a) = p_{max}(s, F T_{GFa})$

- This yields the qualitative property given earlier:
 - Prob $^{\sigma}(s,\,GF\,\,a)>0$ for some adversary σ
 - $\Leftrightarrow p_{max}(s, GF a) > 0$
 - $\Leftrightarrow \ p_{max}(s, \ F \ T_{GFa}) > 0$
 - \Leftrightarrow Prob^{σ}(s, F T_{GFa}) > 0 for some adversary σ
 - $\Leftrightarrow \ \mathbf{S} \models \mathbf{EF} \ \mathbf{T}_{\mathsf{GFa}}$
 - \Leftrightarrow T \cap Sat(a) $\neq \emptyset$ for some E.C. T reachable from s
- Another qualitative property:
 - Prob σ (s, GF a) = 1 for some adversary σ

$$\Leftrightarrow p_{max}(s, GF a) = 1$$

 $\Leftrightarrow p_{max}(s, F T_{GFa}) = 1$

Compute with Prob1F

Repeated reachability – MDPs (min)

- Repeated reachability for MDPs minimum probabilities
 p_{min}(s, GF a)
- First, a useful qualitative property:

Examples

• $s_0 \vDash P_{\geq 1}$ [GF (b \lor c \lor d)] ?

• $s_0 \models P_{\geq 1} [GF(b \lor d)]$?

Repeated reachability – MDPs (min)

- Repeated reachability for MDPs minimum probabilities
 - p_{min}(s, GF a)
- Quantitative case
 - use duality of min/max probabilities for MDPs

$$- p_{min}(s, \psi) = 1 - p_{max}(s, \neg \psi)$$

- e.g. $p_{min}(s, GF a) = 1 p_{max}(s, FG \neg a)$
- So min probabilities for repeated reachability (GF)
 - can be computed as max probabilities for persistence (FG)

Persistence – MDPs

- Persistence for MDPs
 - $p_{min}(s, FG a) \text{ or } p_{max}(s, FG a)$
- Quantitative case maximum probabilities
 - $p_{max}(s, FG a) = p_{max}(s, F T_{FGa})$
 - where T_{FGa} is the union of sets T for all end components (T,Steps') with $T \subseteq Sat(a)$ (i.e. all states in T satisfy a)

Repeated reachability (again)

• We now have way a of computing minimum probabilities for repeated reachability (GF)

$$- p_{min}(s, GF a) = 1 - p_{max}(s, FG \neg a)$$
$$= 1 - p_{max}(s, FT_{FG \neg a})$$

- where
$$T_{FG\neg a}$$
 is the union of sets T for all end components (T,Steps') with $T \subseteq S \setminus Sat(a)$

- ie. $T_{FG\neg a}$ is the union of sets T for all end components (T,Steps') with T \cap Sat(a) = \emptyset

$$- s \models P_{\geq 1} [GFa]$$

 \Leftrightarrow

 $- T \cap Sat(a) \neq \emptyset$ for all end components T reachable from s

DP/Probabilistic Model Checking, Michaelmas 2011

Opposite of condition for GFa

Examples

• $s_0 \models P_{>0} [GFd]?$

• $s_0 \models P_{>0.3} [GFd]?$

Summing up... I

- LTL: path-based, path operators can be combined
- PCTL*: subsumes PCTL and LTL

CTL	Φ	non-probabilistic
LTL	Ψ	(LTSs)
PCTL	Φ	
LTL + prob.	Prob(s, ψ)	probabilistic (DTMCs, MDPs)
PCTL*	Φ	

Summing up... II

- 2 useful instances of LTL formulae:
 - repeated reachability: GF a
 - persistence: FG a
- DTMCs
 - qualitative: properties of reachable BSCCs
 - quantitative: probability of reaching success set (BSCC set)
- MDPs
 - end components: MDP analogue of BSCCs
 - − $p_{max}(s, GF a)$ − max. reachability of success set $(T \cap Sat(a) \neq \emptyset)$
 - $P_{\geq 1}$ [GF a] reachability of end components
 - p_{min}(s, GF a) one minus max. prob. for dual property
 - $p_{max}(s, FG a)$ max. reachability of success set (T \subseteq Sat(a))
 - p_{min}(s, FG a) again, via dual property