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Overview 

•  LTL - Linear temporal logic 

•  Repeated reachability and persistence 

•  Long-run properties of DTMCs 
−  bottom strongly connected components (BSCCs) 

•  Long-run properties of MDPs 
−  end components (E.C.s) 
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Limitations of PCTL 
•  PCTL, although useful in practice, has limited expressivity 

−  essentially: probability of reaching states in X, passing only 
through states in Y (and within k time-steps) 

•  More expressive logics can be used, for example: 
−  LTL [Pnu77] - the non-probabilistic linear-time temporal logic 
−  PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL 
−  both allow path operators to be combined 

•  In PCTL, temporal operators always appear inside P~p […] 
−  (and, in CTL, they always appear inside A or E) 
−  in LTL (and PCTL*), temporal operators can be combined 
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Review - CTL and PCTL 
•  CTL: 

−  φ  ::=  true | a | φ ∧ φ | ¬φ | A ψ | E ψ 

−  ψ  ::=  X φ | φ U φ 

•  PCTL 
−  φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ] 
−  ψ  ::=  X φ | φ U≤k φ | φ U φ 

•  Notation for paths: ω = s0s1s2…  
−  Path(s) = set of all (infinite) paths with s0 = s 
− ω(i) denotes the (i+1)th state, i.e. ω(i) = si 

− ω[i…] is the suffix starting from si, i.e. ω[i…] = sisi+1si+2… 
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LTL - Linear temporal logic 
•  LTL syntax 

−  path formulae only 

−  ψ ::=  true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ 
−  where a ∈ AP is an atomic proposition 

•  LTL semantics (for a path ω) 
− ω ⊨ true    always 
− ω ⊨ a    ⇔  a ∈ L(ω(0)) 
− ω ⊨ ψ1 ∧ ψ2  ⇔  ω ⊨ ψ1 and ω ⊨ ψ2 

− ω ⊨ ¬ψ    ⇔  ω ⊭ ψ 
− ω ⊨ X ψ   ⇔  ω[1…] ⊨ ψ 
− ω ⊨ ψ1 U ψ2  ⇔  ∃k≥0 s.t. ω[k…] ⊨ ψ2 and  

      ∀i<k ω[i…] ⊨ ψ1 
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LTL - Linear temporal logic 
•  Derived operators like CTL, for example: 

−  F ψ ≡ true U ψ 
−  G ψ ≡ ¬F(¬ψ) 

•  LTL semantics (non-probabilistic) 
−  implicit universal quantification over paths 
−  i.e. for an LTS M = (S,sinit,→,L)  and LTL formula ψ 
−  s ⊨ ψ iff ω ⊨ ψ for all paths ω ∈ Path(s) 
−  M ⊨ ψ iff sinit ⊨ ψ 

•  e.g: 
−  A F (req ∧ X ack) 
−  “it is always possible that a request, followed immediately by 

an acknowledgement, can occur” 
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More LTL examples 
•  (F tmp_fail1) ∧ (F tmp_fail2) 

−  “both servers suffer temporary failures at some point” 

•  GF ready 
−  “the server always eventually returns to a ready-state” 

•  G (req → F ack) 
−  “requests are always followed by an acknowledgement” 

•  FG stable 
−  “the system reaches and stays in a ‘stable’ state” 
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Branching vs. Linear time 

•  LTL but not CTL: 
−  FG stable 
−  “the system reaches and stays in a ‘stable’ state” 
−  e.g. A FG stable ≢ AF AG stable  

•  CTL but not LTL: 
−  AG EF init 
−  e.g. “for every computation, it is always possible to return to 

the initial state” 
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LTL + probabilities 
•  Same idea as PCTL: probabilities of sets of path formulae 

−  for a state s of a DTMC and an LTL formula ψ: 
−  Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ } 
−  all such path sets are measurable (see later lecture) 

•  For MDPs, we can again consider lower/upper bounds 
−  pmin(s, ψ) = infσ∈Adv Probσ(s, ψ) 
−  pmax(s, ψ) = supσ∈Adv Probσ(s, ψ) 
−  (for LTL formula ψ) 

•  For DTMCs or MDPs, an LTL specification often comprises 
an LTL (path) formula and a probability bound 
−  e.g. P>0.99 [ F ( req ∧ X ack ) ] 
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PCTL* 
•  PCTL* subsumes both (probabilistic) LTL and PCTL 

•  State formulae: 
−  φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ] 
−  where a ∈ AP, ~ ∈ {<,>,≤,≥}, p ∈ [0,1] and ψ a path formula 

•  Path formulae: 
−  ψ  ::= φ | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ 
−  where φ is a state formula 

•  A PCTL* formula is a state formula φ 
−  e.g. P>0.99 [ GF crit1 ] ∧ P>0.99 [ GF crit2 ] 
−  e.g. P≥0.75 [ GF P>0 [ F init ] 
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Fundamental property of DTMCs 
•  Strongly connected component (SCC) 

−  maximally strongly connected set of states 
•  Bottom strongly connected component (BSCC) 

−  SCC T from which no state outside T is reachable from T 

•  With probability 1,  
a BSCC will be reached  
and all of its states 
visited infinitely often 

•  Formally: 
−  Prs { ω ∈ Path(s) | ∃ i≥0, ∃ BSCC T such that 

                            ∀ j≥i ω(i) ∈ T and  
                            ∀ s’∈T ω(k) = s' for infinitely many k }  =  1 
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Repeated reachability - DTMCs 
•  Repeated reachability: 

−  “always eventually…” or “infinitely often…” 

•  e.g. “what is the probability that the protocol successfully 
sends a message infinitely often?” 

•  Using LTL notation: 
− ω ⊨ GF a 
        ⇔ 
− ∀ i≥0 . ∃ j≥i . ω(j) ∈ Sat(a) 

•  Prob(s, GF a) 
         = Prs { ω ∈ Path(s) | ∀ i≥0 . ∃ j≥i . ω(j) ∈ Sat(a) } 
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Qualitative repeated reachability 
•  Prs { ω ∈ Path(s) | ∀ i≥0 . ∃ j≥i . ω(j) ∈ Sat(a) } = 1 
•  P≥1 [ GF a ] 

 if and only if  

•  T ∩ Sat(a) ≠ ∅ for all BSCCs T reachable from s 
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Examples: 

s0 ⊨ P≥1 [ GF (b∨c) ] 
s0 ⊭ P≥1 [ GF b ] 
s2 ⊨ P≥1 [ GF c ] 

PCTL* 

{b} {b} 
{c} 
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Quantitative repeated reachability 
•  Prob(s, GF a) = Prob(s, F TGFa) 

−  where TGFa = union of all BSCCs T with T ∩ Sat(a) ≠ ∅ 

•  From the above, we also have: 
−  P>0 [ GF a ]  ⇔  T ∩ Sat(a) ≠ ∅ for some reachable BSCC T 

Example: 

Prob(s0, GF b) 
= Prob(s0, F TGFb) 
= Prob(s0, F (T1∪T2)) 
= Prob(s0, F {s3,s4}) 
= 2/3 + 1/6 = 5/6 
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Persistence - DTMCs 
•  Persistence properties: “eventually always…” 

−  e.g. “what is the probability of the leader election algorithm 
reaching, and staying in, a stable state?” 

−  e.g. “what is the probability that an irrecoverable error 
occurs?” 

•  Using LTL notation: 
− ω ⊨ FG a 
        ⇔ 
−  ∃ i≥0 . ∀ j≥i . ω(j) ∈ Sat(a) 

•  Prob(s, FG a) 
         = Prs { ω ∈ Path(s) | ∃ i≥0 . ∀ j≥i . ω(j) ∈ Sat(a) } 
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Qualitative persistence 
•  Prs { ω ∈ Path(s) | ∃ i≥0 . ∀ j≥i . ω(j) ∈ Sat(a) } = 1 
•  P≥1 [ FG a ] 

 if and only if  

•  T ⊆ Sat(a) for all BSCCs T reachable from s 

s0 

0.25 1 

s1 s2 

s3 s4 s5 

1 

1 1 

0.25 0.5 

0.5 

0.5 

Examples: 

s0 ⊭ P≥1 [ FG (b∨c) ] 
s0 ⊨ P≥1 [ FG (b∨c∨d) ] 

s2 ⊨ P≥1 [ FG (c∨d) ] 
{b} {b} 

{c} 

{d} 
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Quantitative persistence 
•  Prob(s, FG a) = Prob(s, F TFGa) 

−  where TFGa = union of all BSCCs T with T⊆Sat(a) 

Example: 

Prob(s0, FG (b∨c)) 
= Prob(s0, F TFG(b∨c)) 
= Prob(s0, F (T1∪T2)) 
= Prob(s0, F {s3,s4}) 
= 2/3 + 1/6 = 5/6 
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Success sets 
•  The sets TP for property P are called success sets 

−  TGFa = union of all BSCCs T with T ∩ Sat(a) ≠ ∅ 
−  TFGa = union of all BSCCs T with T ⊆ Sat(a) 

•  Sometimes denoted UP 
−  e.g. UGFa 

−  we use Tp here (to avoid confusion with the until operator) 
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Repeated reachability + persistence 
•  Repeated reachability and persistence are dual properties 

−  GF a ≡ ¬(FG ¬a) 
−  FG a ≡ ¬(GF ¬a) 

•  Hence, for example: 
−  Prob(s, GF a) = 1 - Prob(s, FG ¬a) 

•  Can show this through LTL equivalences, or… 

•  Prob(s, GF a) + Prob(s, FG ¬a) 
 = Prob(s, F TGFa) + Prob(s, F TFG¬a) 

−  TGFa = union of BSCCs T with T∩Sat(a)≠∅  (T intersects Sat(a)) 
−  TFG¬a = union of BSCCs T with T⊆(S\Sat(a))  (no intersection) 

 = Prob(s, F (TGFa ∪ TFG¬a)) = 1 (fundamental DTMC property) 
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End components of MDPs 
•  Consider an MDP M = (S,sinit,Steps,L) 

•  A sub-MDP of M is a pair (T,Steps’) where: 
−  T ⊆ S is a (non-empty) subset of M’s states 
−  Steps’(s) ⊆ Steps(s) for each s ∈ T 
−  (T,Steps’) is closed under probabilistic  

branching, i.e. the set of states 
{ s’ | µ(s’)>0 for some (a,µ)∈Steps’(s) }  
is a subset of T 

•  An end component of M is a  
strongly connected sub-MDP 
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Note: 
●  action labels omitted 
●  probabilities omitted where =1 
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End components - Examples 
•  Sub-MDPs 

−  can be formed from state sets such as: 
−  {s2,s5,s7,s8}, {s0,s2,s5,s7,s8}, {s5,s7,s8}, 
−  {s1,s3,s4}, {s1,s3,s4,s6}, {s3,s4}, … 

•  End components 
−  can be formed from state sets: 
−  {s3,s4}, {s1,s3,s4}, {s6}, {s5,s7,s8} 

•  Note that 
−  state sets do not necessarily  

uniquely identify end components 
−  e.g. {s1,s3,s4}  
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End components of MDPs 
•  For finite MDPs… 

−  (analogue of fundamental property  
of finite DTMCs) 

•  For every end component, there  
is an adversary which, with 
probability 1, forces the MDP 
to remain in the end component,  
and visit all its states infinitely often 

•  Under every adversary σ,  
with probability 1 an end component 
will be reached and all of its states 
visited infinitely often 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Repeated reachability - MDPs (max) 
•  Repeated reachability (GF) for MDPs 

−  consider first the case of maximum probabilities… 
−  pmax(s, GF a) 

•  First, a simple qualitative property: 
−  Probσ(s, GF a) > 0 for some adversary σ, i.e. pmax(s, GF a) > 0 
     ⇔ 
−  T ∩ Sat(a) ≠ ∅ for some end component T reachable from s 

•  The quantitative case (for maximum probabilities): 
−  pmax(s, GF a) = pmax(s, F TGFa) 
−  where TGFa is the union of sets T for all end components 

(T,Steps’) with T ∩ Sat(a) ≠ ∅ (i.e. at least one a-state in T) 
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Example 
•  Check: P<0.8 [ GF b ] for s0 

•  Compute pmax(GF b) 
−  pmax(GF b) = pmax(s, F TGFb) 
−  TGFb is the union of sets T  

for all end components 
with T ∩ Sat(b) ≠ ∅ 

−  Sat(b) = { s4, s6 } 
−  TGFb = T1∪T2∪T3 = { s1, s3 s4, s6 } 
−  pmax(s, F TGFb) = 0.75 
−  pmax(GF b) = 0.75 

•  Result: s0 ⊨ P<0.8 [ GF b ] 
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Repeated reachability - MDPs (max) 
•  Quantitative case: 

−  pmax(s, GF a) = pmax(s, F TGFa) 
•  This yields the qualitative property given earlier: 

−  Probσ(s, GF a) > 0 for some adversary σ 
    ⇔  pmax(s, GF a) > 0 
    ⇔  pmax(s, F TGFa) > 0 
    ⇔  Probσ(s, F TGFa) > 0 for some adversary σ 
    ⇔  s ⊨ EF TGFa 

    ⇔  T ∩ Sat(a) ≠ ∅ for some E.C. T reachable from s 

•  Another qualitative property: 
−  Probσ(s, GF a) = 1 for some adversary σ 
    ⇔  pmax(s, GF a) = 1 
    ⇔  pmax(s, F TGFa) = 1 

Compute with 
Prob1E 
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Repeated reachability - MDPs (min) 
•  Repeated reachability for MDPs - minimum probabilities 

−  pmin(s, GF a) 

•  First, a useful qualitative property:  

−  Probσ(s, GF a) = 1 for all adversaries σ 
     ⇔ 
−  s ⊨ P≥1 [ GF a ] 
     ⇔ 
−  T ∩ Sat(a) ≠ ∅ for all end components T reachable from s 

PCTL* 
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Examples 

•  s0 ⊨ P≥1 [ GF (b∨c∨d) ]  ? 

•  s0 ⊨ P≥1 [ GF (b∨d) ]  ? 
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Repeated reachability - MDPs (min) 
•  Repeated reachability for MDPs - minimum probabilities 

−  pmin(s, GF a) 

•  Quantitative case 
−  use duality of min/max probabilities for MDPs 
−  pmin(s, ψ) = 1- pmax(s, ¬ψ) 
−  e.g. pmin(s, GF a) = 1- pmax(s, FG¬a) 

•  So min probabilities for repeated reachability (GF) 
−  can be computed as max probabilities for persistence (FG) 
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Persistence - MDPs 
•  Persistence for MDPs 

−  pmin(s, FG a) or pmax(s, FG a) 

•  Quantitative case - maximum probabilities 
−  pmax(s, FG a) = pmax(s, F TFGa) 
−  where TFGa is the union of sets T for all end components 

(T,Steps’) with T ⊆ Sat(a) (i.e. all states in T satisfy a) 
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Repeated reachability (again) 
•  We now have way a of computing minimum probabilities 

for repeated reachability (GF) 
−  pmin(s, GF a) = 1 - pmax(s, FG¬a) 
                       = 1 - pmax(s, F TFG¬a) 
−  where TFG¬a is the union of sets T for all end components 

(T,Steps’) with T ⊆ S\Sat(a) 
−  ie. TFG¬a is the union of sets T for all end components 

(T,Steps’) with T ∩ Sat(a) = ∅ 

•  Can also now show why: 
−  s ⊨ P≥1 [ GF a ] 
     ⇔ 
−  T ∩ Sat(a) ≠ ∅ for all end components T reachable from s 

Opposite of 
condition for GFa 
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Examples 

•  s0 ⊨ P>0 [ GF d ] ? 

•  s0 ⊨ P>0.3 [ GF d ] ? 
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Summing up… I 
•  LTL: path-based, path operators can be combined 
•  PCTL*: subsumes PCTL and LTL 

non-probabilistic 
(LTSs) 

probabilistic 
(DTMCs, MDPs) 

CTL 

LTL 

PCTL 

LTL + prob. 

PCTL* 

Φ 

ψ 

Φ 

Prob(s, ψ) 

Φ 



33 DP/Probabilistic Model Checking, Michaelmas 2011 

Summing up… II 
•  2 useful instances of LTL formulae: 

−  repeated reachability: GF a 
−  persistence: FG a 

•  DTMCs 
−  qualitative: properties of reachable BSCCs 
−  quantitative: probability of reaching success set (BSCC set)  

•  MDPs 
−  end components: MDP analogue of BSCCs 
−  pmax(s, GF a) - max. reachability of success set (T∩Sat(a)≠∅) 
−  P≥1 [ GF a ] - reachability of end components 
−  pmin(s, GF a) - one minus max. prob. for dual property 
−  pmax(s, FG a) - max. reachability of success set (T ⊆ Sat(a)) 
−  pmin(s, FG a) – again, via dual property 


